Finite Functions #
Note: the API and notation of FinFun
is still unstable.
A FinFun α β
is a function from α
to β
with a finite domain of definition.
Equations
- «term_⇀_» = Lean.ParserDescr.trailingNode `«term_⇀_» 50 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⇀ ") (Lean.ParserDescr.cat `term 0))
Instances For
Equations
- «term_↾_» = Lean.ParserDescr.trailingNode `«term_↾_» 50 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "↾") (Lean.ParserDescr.cat `term 0))
Instances For
instance
instCoeFinFunForallOfDecidableEqOfZero
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
[Zero β]
:
Equations
Equations
- Function.toFinFun f dom = (f↾dom)
Instances For
theorem
Function.toFinFun_eq
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
[Zero β]
(f : α → β)
(dom : Finset α)
(h : ∀ x ∉ dom, f x = 0)
: